
1

GLOBALEAKS - FINDINGS REPORT
GlobaLeaks Security Assessment

February 14, 2018

Prepared for: GlobaLeaks

Subgraph Technologies, Inc.
642 Rue de Courcelle, Suite 309
Montreal, Quebec
https://subgraph.com

2

Overview

In January of 2018, Subgraphperformed a security audit of theGlobaLeaks open-sourcewhistleblowing
platform. We were requested to perform an audit of the new multi-tenancy implementation in the
application as well as a general security assessment.

The test resulted in twominor security findings. Our overall assessment is that the application has been
designed to defend against common application security issues. The multi-tenancy implementation
also appears to provide an adequate level of isolation against typical attack scenarios such attempts
by users of one deployed instance to access other instances.

In addition to the security findings, this report includes our observations and notes about the security
measures that have been implemented.

Testing activities

To perform this audit, we ran our own local instance of GlobaLeaks in Docker as well as on a separate
dedicated computer. Most of the testing was performed via direct network access to the service on
TCP port 8082. However, some tests were also performed via the Tor hidden service ‘.onion’ addresses.

Our tests consisted of the following activities:

• Automated and manual testing of the user interface (unauthenticated and under different ap-
plication roles)

• Automated andmanual testing of the REST API (unauthenticated and under different application
roles)

• Testing the authorization of roles and tenants to ensure the following:

– Unauthenticated users cannot gain access as an existing Whistleblower, recipient, custo-
dian, or administrator

– Authenticated users cannot elevate privileges
– Users within one tenant cannot gain access to another tenant

• Code auditing of security critical parts of the application, including:

– Authentication
– Authorization
– Handling of input
– Database usage
– Multi-tenancy support

3

Summary

No. Title Severity Remediation

V-001 Pre-Authentication File Upload Processing Medium Resolved
V-002 Exception API Phishing Vulnerability Low Unresolved

4

Details

V-001: Pre-Authentication File Upload Processing

Severity Remediation

Medium Resolved

Discussion

Subgraph discovered a security issue in relation to how file uploads such as profile images are pro-
cessed by the GlobaLeaks application. This affects all of the file upload APIs of the application.

The issue is that some pre-processing is performed prior to authentication. In particular, the applica-
tion will make preparations to encrypt the uploaded files.

If the user is not authenticated, the file upload will be rejected by the application but the files that were
created while preparing to encrypt the uploaded file will remain open. These open file descriptors will
count towards the maximum number of open files for the process.

We noticed that the globaleaks.init file included in the Debian packaging configuration attempts
to raise this limit. This will prevent the issue from occurring earlier. It is also worth noting that if the
application is run inside of Docker, it will use the Docker limit, which defaults to 1024. This is how we
initially triggered the issue. If deploying in Docker, the global limit should be raised. Raising the limit
in any case does not prevent the vulnerability, it just increases the time and effort required to trigger
it.

An attacker can exploit this to cause a denial-of-service to the application by uploading a number of
files that exceeds the limit allowed for the process. Once this limit is reached, the application will not
be able to open any more files.

While in this state, the application will be blocked from establishing new connections. In this case, the
following error message appears in the logs:

[twisted.web.server.Site] Could not accept new connection (EMFILE)

The other side-effect we observed in the logs was an inability to open the SQLite database file:

[-] OperationalError: (sqlite3.OperationalError) unable to open database
file↪→

The application will eventually recover if the attack stops.

5

Impact Analysis

Files uploaded as a result of this vulnerability are not accepted by the application. However, a denial-
of-service is possible because the application still creates the AES keys that are meant to encrypt the
uploaded files. It does this before authenticating the user.

The issue affects all of the file upload APIs. It is to exploitable through the submission interface once a
token has been obtained. However, other interfaces including those in the admin path can be abused
without requiring a token or session ID. This is more effective than trying to exploit the issue through
the submission interface – the user does not need to submit tokens and it may generate fewer notifi-
cations than submissions do.

We were able to reproduce this condition over Tor using the .onion address of our deployed application.

While accessing the application by its .onion address is slow, we were able to able to cause the DoS by
running a large number of file uploads in parallel.

The attack does not require much bandwidth – it sufficient to send a file upload without any content,
resulting in a request that is approximately 1KB in size. Running the file uploads in parallel (we used
500 Burp Intruder threads) is realistic from a single computer running commodity hardware. It took
30-60 minutes to reproduce with a file descriptor limit of 32768, without trying to further optimize or
distribute the attack.

The attack would be much faster on an instance running on the public Internet. However, attacking
hosts could be then be blocked by source IP and the normal denial-of-service incident response mea-
sures are applicable.

As a side effect, when the denial-of-service condition has been triggered, the application will print the
path and name of AES key it tried to generate in the response messages. This is not very sensitive
information but the application should display a generic error instead of the full exception.

Remediation Recommendations

Require authentication prior to performing any other operations. The application prepares to accept
a file upload prior to authenticating the user. If authentication checks are applied before these prepa-
rations are made then it is no longer possible for an unauthenticated user to exploit the issue.

The flowIdentifier field is used to determine whether or not to prepare the uploaded file for encryp-
tion. While this field is generated by the application, an arbitrary value will also be accepted. The
application should check that the flowIdentifier it receives is one that it created rather than an arbitrary
user-supplied value. If the supplied value was not created by the application then the request should
be rejected without preparing to encrypt the file.

Complete error messages should not be displayed to the user as exception information may aid in
the discovery and exploitation of vulnerabilities. The application should instead display generic error
messages to users.

6

GlobaLeaks may want to consider adding signatures for invalid file uploads to the anomaly detection
mechanism. This could include file uploads with a malformed flowIdentifier. File uploads to privileged
APIs that are missing the ‘X-Session’ request header are also suspicious.

Rate-limiting, similar to what is implemented in the brute-force protections, may also help to limit
exploitation of this and other issues.

Remediation Status

Resolved. GlobaLeaks addressed this issue in the following commit:

https://github.com/globaleaks/GlobaLeaks/commit/f184b08a7432107297abf7e351a4dce02b513088

Subgraph re-tested the application with the fix applied and could no longer reproduce the issue.

Additional Information

The following screenshot shows a file upload request in Burp intruder:

7

The following screenshot shows the response:

8

V-002: Exception API Phishing Vulnerability

Severity Remediation

Low Unresolved

Discussion

The application allows unauthenticated access to the exception REST API endpoint. This API will send
exception emails to the users configured to receive notifications.

The exception emails are generated based on information supplied to the API by the user. This lets
users inject potentially misleading or malicious content into exception emails.

The handler for the exception API allows unauthenticated access by default (the check_roles direc-
tive is set to a wildcard value).

Impact Analysis

This issue can be exploited to launch phishing attacks against users configured to receive exception
notification emails. As they will appear to come from the application, and may even be encrypted if
encrypted notifications are configured, the target of the phishing attack may trust the email contents.
The emails will still include exception information so in all likelihood an attacker would exploit this
to trick a user into visiting a malicious link or provide misleading information about the state of the
application.

TheerrorUrl field of the exception request allows unformatted input to be injected in the notification
emails.

Remediation Recommendations

Our understanding of this API is that it is meant to capture client-side exceptions. Therefore, it may
be by-design that exceptions generated by unauthenticated users are captured. This makes the issue
trickier to address.

A compromisemay be to only enable unauthenticated exceptions to be generated in developmentmode
and to require authentication in productionmode.

GlobaLeaks could also try to filter or structure the exception information in such a way that it cannot
be easily manipulated by the user. This may also be challenging to implement.

Another option is to advise the recipient of the exception email that the report may contain untrusted
information delivered from the client.

9

Additional Information

The following screenshot shows an exception request from an unauthenticated user that contains user-
supplied input:

The following screenshot shows the exception email with the injected content:

10

Observations

This section includes the observations and noteswe gathered during the tests, code audit, and through
reading theGlobaLeaks software security documentation. It is not intended to cover every aspect of the
security design but rather highlight how some security features have been implemented and provide
suggestions.

Roles

The GlobaLeaks application includes a number of different roles that are granted privileges according
to the types of operations they are expected to perform. The following roles are supported:

• Admin (administers the application, each tenant has a different admin account)
• Custodian
• Recipient (accepts submissions, interacts with whistleblowers)
• Whistleblower (creates submissions, interacts with recipients)

The handlers implements for each API implement the privileges for these roles. A check_roles direc-
tive is added to the constructor for each handler. The directive is then enforced by an authentication
decorator that is implemented by the base handler class that all other handlers inherit from.

We performed tests to attempt to bypass the role enforcement mechanism but did not find any secu-
rity issues with it. While the role mechanism appears to function correctly, care must be taken when
assigned roles to any handler. In finding V-002 we describe an issue where unauthenticated users are
able to send input to the exception handler. This is because the check_roles directive is set to a
wildcard (*).

Submissions and flood protection

GlobaLeaks tries to mitigate the risks of accepting anonymous submissions over Tor, such as denial-
of-service attacks. GlobaLeaks has performed an analysis of these concerns and implemented some
controls to address the problem. Some of these measures are described below. Further information
can also be found within their code repository:

https://github.com/globaleaks/GlobaLeaks/blob/master/backend/doc/floodprotection.md

The application implements a temporary session for new submissions. When creating a new submis-
sion, a tokenwill be issued and assigned a number of remaining uses (30). Each request will decrement
the counter and when it reaches zero, a new tokenmust be obtained. While this adds some complexity
for an attacker, it can still be scripted.

To compliment this, a CAPTCHA mechanism is activated once certain anomaly thresholds have been
passed. This is not a strong protection and can be trivially bypassed. The CAPTCHA is a simple math
equation that can be extracted and automatically calculated by a script.

11

A motivated attacker could script the entire submission process. The script including a solver for
CAPTCHAs when prompts are seen. Automation of submissions may be a nuisance for the adminis-
trators and recipients or could result in a denial-of-service.

Stronger protections may prevent this but must be implemented carefully as to not introduce risks to
legitimate whistleblowers. For example, use of third-party services to provide stronger CAPTCHAs is
likely not a desirable trade-off because it means that the whistleblower’s browser must communicate
with third-parties.

The anomaly detection features will provide notifications of this type of abusive behavior. Limits are
also placed on the maximum size of uploaded files.

Rate-limiting, similar to the brute-force protection, may help to limit automation.

In any case, this seems to be an open problem with no easy solution. This is why we have not high-
lighted it as a security finding in the report. The developers have researched the problem and imple-
mented some counter-measures that are not without trade-offs. All such counter-measures must be
carefully evaluated to ensure that they do not introduce risks to the whistleblower, the application, or
add more potential for denial-of-service attacks.

Multi-tenancy implementation

GlobaLeaks implemented multi-tenacy in the application. The use-case for multi-tenancy is to enable
multiple organizations (or branches within the same organization) to accept submissions to different
endpoints within a single deployment of the application.

The typical multi-tenant deployment of GlobaLeaks would involve different organizations or branches
of an organization that may theoretically share submissions with each other. Due to this, the security
boundary between tenant access to submissions was not as important as other concerns. The multi-
tenant implementation was still designed to prevent this type of cross-tenant access.

Each tenant is assigned a number ID. When handling requests, the application must determine the
destination tenant for the request. In this case, the tenant ID is either the first one or it is calculated
from the provided HTTP Host header (which, for example, may be the .onion address of the tenant).
If an invalid Host is supplied, the application will fail closed (sending an error message to the user).

We performed an audit of all of the roles for each tenant to ensure that a user fromone tenant could not
gain access to the user of another tenant. We did not find any security issues. Each issue is assigned a
tenant ID in the database and we did not find any means to bypass this control.

Web application security measures

During the audit, we observed a number of explicit security measures intended to prevent common
web application vulnerabilities. There are also a number of other design choices which help to implicitly
prevent these types of vulnerabilities.

12

Brute-forcing of credentials

GlobaLeaks has implemented counter-measures to limit brute-force credential guessing attacks. This
is especially a concern when the application is accessed anonymously as a Tor Onion service.

These counter-measures include the following:

• A response delay is introduced after failed authentication attempts
• Failed authentication attempts raise the alert level, which may trigger other counter-measures
and will send notifications to the administrator (which are limited to avoid spamming the admin-
istrator)

We encountered the response delays during our automated tests as they will be applied any time a
large number of requests are sent to the authentication API. They slowed during our scanning of this
API considerably.

The notifications may be sent as a response to other anomalies or suspicious behavior. As mentioned
in the other reports, the implementation of a response delay for other types of suspicious activity could
complicate other attacks such as the issue described in finding V-001.

Cross-site Request Forgery

The REST API does not use authentication cookies but instead authenticates users via a session ID that
is sent with a custom header (‘X-Session’). This behaves similarly to a cross-request forgery token as it
is a value embedded within the client content that cannot be guessed by the attacker.

Directory traversal

Safe handling of file uploads and downloads is paramount to the security of the application. It is impor-
tant that the application accepts file uploads safely, without posing a risk to the host or other users of
the application (recipients, administrators, etc.). Likewise, as the submissions are sensitive in nature,
the application should prevent unauthorized access to them.

Directory traversal vulnerabilities may allow unauthorized access to files outside the intended location
of file upload or download operations. In the case of file downloads, this could unauthorized access to
submissions or other sensitive files on the host. In the case of file uploads, malicious file uploads could
overwrite other files on the host (with the permissions of the application), which could lead to denial
of service or code execution. GlobaLeaks implements some explicit security measures to prevent this
type of vulnerability.

The first security measure that the application randomly generates the filenames of any uploaded files
instead of accepting externally supplied filenames from the uploader. This means that the uploaded
can not influence the location of uploaded files. Instead they will be stored in a path specified by the
application, using a random filename that is stored in the database. Whenuploaded files are requested,
the application queries the database for the filenames instead of serving them directly from the host
filesystem.

13

There is a secondary security measure to ensure that files are only served from paths that are config-
ured in the application rather than arbitrary filesystem paths. This measure is implemented for file
downloads, uploads, and the serving of static files.

def directory_traversal_check(trusted_absolute_prefix, untrusted_path):
"""
check that an 'untrusted_path' matches a 'trusted_absolute_path'
prefix↪→

"""
if not os.path.isabs(trusted_absolute_prefix):

raise Exception("programming error: trusted_absolute_prefix is
not an absolute path: %s" %↪→

trusted_absolute_prefix)

untrusted_path = os.path.abspath(untrusted_path)

if trusted_absolute_prefix !=
os.path.commonprefix([trusted_absolute_prefix, untrusted_path]):↪→

log.err("Blocked file operation for: (prefix, attempted_path) :
('%s', '%s')",↪→

trusted_absolute_prefix, untrusted_path)

raise errors.DirectoryTraversalError
↪→

As the application already detects directory traversal attempts and alerts on anomalies, GlobaLeaks
may want to consider flagging directory traversal attempts as an anomalies.

Cross-site scripting and HTML injection

Protection against these attacks rely on the filtering features of the Angular.js framework. All input is
rendered to browsers is passed through the $sanitize filter of the framework.

We did not discover any security issues with this approach. However, it should be noted that Angular.js
has been subject to cross-site scripting and other vulnerabilities in the past. As with any third-party
component, it is important to ensure that the framework and its dependencies are kept up-to-date.

SQL injection

GlobaLeaks stores persistent data in an SQLite database using the SQLAlchemy library.

When used according to best practices, SQLAlchemy parameterizes and escapes parameters supplied
in queries. This provides protection against SQL injection vulnerabilities. However, if this behavior is
bypassed to construct a raw query that includes unescaped user-supplied input, then this will result in
a vulnerability. During our tests and code audit, we did not discover any instances of this.

14

Appendix

Methodology

Our approach to testing is designed to understand the design, behavior, and security considerations
of the assets being tested. This helps us to achieve the best coverage over the duration of the test.

To accomplish this, Subgraph employs automated, manual and custom testing methods. We conduct
our automated tests using the industry standard security tools. This may include using multiple tools
to test for the same types of issues. We perform manual tests in cases where the automated tools
are not adequate or reveal behavior that must be tested manually. Where required, we also develop
custom tools to perform tests or reproduce test findings.

The goals of our testing methodology are to:

• Understand the expected behavior and business logic of the assets being tested
• Map out the attack surface
• Understand how authentication, authorization, and other security controls are implemented
• Test for flaws in the security controls based on our understanding
• Test every point of input against a large number of variables and observe the resulting behavior
• Reproduce and re-test findings
• Gather enough supporting information about findings to enable us to classify, report, and sug-
gest remediations

Description of testing activities

Depending on the type and scope of the engagement, our methodology may include any of the follow-
ing testing activities:

1. Information Gathering: Information will be gathered from publicly availble sources to help
increase the success of attacks or discover new vulnerabilities

2. Network discovery: The networks in scope will be scanned for active, reachable hosts that
could be vulnerable to compromise

3. Host Vulnerability Assessment: Hosts applications and services will be assessed for known or
possible vulnerabilities

4. Application Exploration: The application will be explored using manual and automated meth-
ods to better understand the attack surface and expected behavior

5. Session Management: Session management in web applications will be tested for security
flaws that may allow unauthorized access

6. Authentication System Review: The authentication system will be reviewed to determine if it
can be bypassed

15

7. Privilege Escalation: Privilege escalation checks will be performed to determine if it is possible
for an authenticated user to gain access to the privileges assigned to another role or adminis-
trator

8. Input Validation: Input validation tests will be performed on all endpoints and fields within
scope, including tests for injection vulnerabilities (SQL injection, cross-site scripting, command
injection, etc.)

9. Business Logic Review: Business logic will be reviewed, including attempts to subvert the in-
tended design to cause unexpected behavior or bypass security controls

Reporting

Findings reports are peer-reviewedwithin Subgraph to produce the highest quality findings. The report
includes an itemized list of findings, classified by their severity and remediation status.

Severity ratings

Severity ratings are a metric to help organizations prioritize security findings. The severity ratings we
provide are simple by design so that at a high-level they can be understood by different audiences.
In lieu of a complex rating system, we quantify the various factors and considerations in the body of
the security findings. For example, if there are mitigating factors that would reduce the severity of a
vulnerability, the finding will include a description of thosemitigations and our reasoning for adjusting
the rating.

At an organization’s request, we will also provide third-party ratings and classifications. For example,
we can analyze the findings to produce Common Vulnerability Scoring System (CVSS)¹ scores or OWASP
Top 10² classifications.

The following is a list of the severity ratings we use with some example impacts:

Critical

Exploitation could compromise hosts or highly sensitive information

High

Exploitation could compromise the application or moderately sensitive information

Medium

Exploitation compromises multiple security properties (confidentiality, integrity, or availability)

¹https://www.first.org/cvss/
²https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

16

Low

Exploitation compromises a single security property (confidentiality, integrity, or availability)

Informational

Finding does not pose a security risk or represents suspicious behavior that merits further in-
vestigation

The severity of a finding is often a product of the impact to general security properties of an application,
host, network, or other information system.

These are:

Property Description

Compromise of confidientiality Exploitation results in authorized access to data

Compromise of integrity Exploitation results in the unauthorized modification of data or
state

Compromise of availability Exploitation results in a degradation of performance or an inabil-
ity to access resources

The actual severity of a finding may be higher or lower depending on a number of other factors that
may mitigate or exacerbate it. These include the context of the finding in relation to the organization
as well as the likelihood of exploitation. These are described in further detail below.

17

Contextual factors

Confidentiality, integrity, and availability are one dimension of the potential risk of a security finding.
In some cases, we must also consider contextual factors that are unique to the organization and the
assets tested.

The following is a list of those factors:

Factor Description

Financial compromise Exploitation may result in financial losses

Reputation compromise Exploitation may result in damage to the reputation of the organization

Regulatory liability Exploitation may expose the organization to regulatory liability (e.g.
place them in a state of non-compliance)

Organizational impact Exploitation may disrupt the operations of the organization

18

Likelihood

Likelihood measures how probable it is that an attacker exploit a finding.

This is determined by numerous factors, the most influential of which are listed below:

Likelihood Description

Authentication required Whether or not the attack must be authenticated

Privilege level Whether or not an authenticated attacker requires special privileges

Public exploit Whether or not exploit code is publicly available

Public knowledge Whether or not the finding is publicly known

Exploit complexity How complex it is for a skilled attacker to exploit the finding

Local vs. remote Whether or not the finding is exposed to the network

Accessibility Whether or not the affected asset is exposed on the public Internet

Discoverability How easy it is for the finding to be discovered by an attacker

Dependencies Whether or not exploitation is dependant on other findings such as in-
formation leaks

19

Remediation status

As part of our reporting, remediation recommendations are provided to the client. To help track the
issues, we also provide a remediation status rating in the findings report.

In some cases, the organization may be confident to remediate the issue and test it internally. In other
cases, Subgraph works with the organization to re-test the findings, resulting in a subsequent report
reflecting remediation status updates.

If requested to re-test findings, we determine the remediation status based on our ability to reproduce
the finding. This is based on our understanding of the finding and our awareness of potential variants
at that time. To reproduce the results, the re-test environment should be as close to the original test
environment as possible.

Security findings are often due to unexpected or unanticipated behavior that is not always understood
by the testers or the developers. Therefore, it is possible that a finding or variations of the finding may
still be present even if it is not reproducible during a re-test. While we will do our best to work with the
organization to avoid this, it is still possible.

The findings report includes the following remediation status information:

Resolved

Finding is believed to be remediated, we can no longer reproduce it

In progress

Finding is in the process of being remediated

Unresolved

Finding is not remediated –may indicate the initial report, a finding under investigation, or one
that the organization has chosen not to address

Not applicable

There is nothing to resolve, this may be the case with informational findings

20

	Overview
	Testing activities

	Summary
	Details
	V-001: Pre-Authentication File Upload Processing
	Discussion
	Impact Analysis
	Remediation Recommendations
	Remediation Status
	Additional Information

	V-002: Exception API Phishing Vulnerability
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	Observations
	Roles
	Submissions and flood protection
	Multi-tenancy implementation
	Web application security measures
	Brute-forcing of credentials
	Cross-site Request Forgery
	Directory traversal
	Cross-site scripting and HTML injection
	SQL injection

	Appendix
	Methodology
	Description of testing activities
	Reporting
	Severity ratings
	Contextual factors
	Likelihood
	Remediation status

